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Expressions for the components of a symmetric tensor of valence two defining 
its principal axes (1.8). (1.9) are given in terms of its trigonometric invariants 
and Euler’s angles. Formulas are cited which use the physical components of 

the tensor given in the orthogonal coordinate system to define the invariants and 

the directions of the principal axes of the tensor. The conditions (2.4) that two 
tensors of the form under consideration are coaxial, are given. 

In contrast to the usual approach [l], the elastic potential is considered here 
as a function of the trigonometric invariants of the strain tensor and of the Euler 
angles defining the directions of the principal axes of strain. Elementary con- 
siderations made it possible to establish the form of the functional dependence 

of the elastic potential on the Euler angles compatible with isotropy groups of 

the crystal classes and orientations. The cubic system however could not be 

dealt with by these means, since its generating symmetry elements include a 
third order axis inclined equally to the coordinate axes. 

1. Let cl, c2, c3 be the unit vectors of the principal vector basis of the symmetric ten- 
sor A, of valence two, i.e. the unit vectors directed along the principal directions of A. 

Constructing the trigonometric tensor basis f2] 

Cl t ‘/a JG(elel+ ezez + eac& G4 = l/z Vr(elea + e3ed 

Gn = IIs J&-(2e2e~ - elel - e&), GS = ‘/a 1/T(ela + ezei) 

GO = l/2 fT(-(c~c~ - eaea), GO = I/Z 1/T(e:ea + es-) (1.1) 

we find that the tensor A has the following expansion: 

A = a,“(;, (1 = 1, . . ., 6) (1.2) 

with me coefficients given by 

aI’ = ‘Ia j/%11, aso = 6, sin &, aa” = 6, Co8 qa, a(” = aSo = ac0 = 0 (1.3) 
4 = a(,) -i- y2) + a(,), 

\ ‘1ers. : 1 is the first invariant, 

ir 0 = l/3 1/5 f(a(Ij - a(J + (nc2) - a(# + (ais) - a(~))’ 

ir.. der>:ltes the intensity and +,is the angle associated with the form of the tensor. The 

last thrpc quantities are connected with the principal values a ,,,of the tensor by the fo- 
lIowr~;,- relations: L( 

atI) = ‘/VII - ‘ii,; ]/(cI sin 11,‘ + l/2 prFoa cos $0 
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Let e,‘, es’, earbe an orthonormalized vector basis 
cipal vector basis is determined using the relations 

ei ‘= alet 

where Iki are the coefficients of the matrix [3] 

the passage to which from the prin- 

111 =C0sacos~c0s~-sinasihfi, 11a = - co9 a sin r 

11s = COS a sin p co9 7 -f sin a co9 p, bu ’ = cos p sin 7, fl, = cos r 

111 = sin p sin 7, 18, = - sinacos/3cosr-.cosasinp (i.6) 
189 = sin a sin 7, Ia2 = -sin 31 sin p cos r + cos a co9 p 

Here@,, o,, uSare the components of the rotation vector transforming the unit vectors 

e,, ear e3 Into e, , ’ e *I, e3’ and (1, p, y are the corresponding 

Euler angles (Fig. 1). 
It can easily be shown that the basisG,‘, . . ., G,‘,con- 

strutted on e,‘, e,‘, e,‘,admits the following expansion of 

the tensor A 

5 
A = aaGa’ (1.7)’ 

with the coefficients 

ai = ‘/a J~T-AI, aj CO, sin vam2j +ft,COS qVomSj 

4 where 0.8) 

Fig. 1. rn.21 = l/a co9 7 - 1/Z, maa = l/a JGcos 2a sina r 

nt2.3 = ‘1% VFcos 2p sina r, m33 = ‘12 co9 2a cos 29 (1 + co9 7) - sin Z/3 sin 2a co9 r 

ma4 = l/a VTsin Z/3 sin2 7, m34 = ‘12 sin 2p cos 2a (1 + cos2 T) + co9 2p sin 2a 60s 7 (’ J) 

m26 = I/Z JfSCos p sin 27, ma5 = - I/Z cos p cos 2a sin 2r + sin p sin 2a sin 7 

ml0 = ?/z )fFsin p sin 27, rns8 = - l/2 sin S cos 2a sin 2T - cos p sin 2a sin 7 

Here the following relations connect a; with the physical components Uij of the tenSOr 

k (on the e,‘, e,‘, es’- basis) 

a1 = ‘/3 -r/S(an + a22 + d33), a4 = jCa13 

al = I/O v/T;(2azz - all - uxi), a5 = v/za,, (1.10) 

aa = l/a V/;i-(a,, - aa3), aa= VTag3 

Performing the convolution of the symmetric tensors (contraction followed by symm- 

etrization) [4] 
A+B = ‘/z (AU f BA) 
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we obtain, in accordance with (1.1). 

2, The formulas (1.7) - (1.9) reveal the structure of the tensor. Knowing the inva- 
dams of the tensor and the directions of its pxutcipal axes, we car compute its compo- 
nents on any orthonormalized basis. The converse problem is somewhat more involved. 

It can be stated as follows: given the physical components of the tensor in some ortho- 

gonal coordinate system, to find its principal values and the directions of its principal 
axes. First we find the invariants using the formulas 

%= = VqaA? - ZAs, sin 3q7, = - 3 vi?-%a-8 (As - l:aAIAl f */s;@) 

A*3 ,I;; ;:1,+1;;;;;i:;;;;; As= 1.;; ;- ;;j 

* . 

To determine the Euler’s angles we must first compute Aa. Using the tables (1.11) we 

contract the tensor A with itself and denoting by (a’)j the coefficients of the expansion 

of Aspn the basis Gr’, .., C,‘we find 

Repeating the procedure used in deriving (1.8) we obtain 

l/s f.?--/l$ + l/a J6%a2 = (a2)r (2.2) 

vF[(lI’)j - 2/8Alaj] = - 0,’ (CO9 2$,mz j + sin 2&ms j) (i = 2, 3, . . *, 6) 

Solving the pairs of equations constructed for each value of j from (1.8) and (2.Q 

we obtain 

(2.3) 

Using the formulas obtained we can now solve the converse problem. Thus using (1.10) 
we obtain ai: from the known physical components aij of the tensor. These in turn are 

used to obtain /tL,j and nlaj from (2.1) and (2.3). Then the (simultaneous) system of 
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equations (1.9) yields the Euler angles defining the position of the principal axes of the 

tensor A. 
It is easy to see that the conditions that two symmetric tensors A and C are coaxial, 

are 
m .c = majut 

2t 
mgj c=m a 

3j (2.4) 

The latter, together with (2.3), yield the following relations connecting the coaxial 
tensors 

(SC = (C - ‘/sclG)/t?c, s, = (A - 1/3AlG) / #, 

The first of the above conditions was obtained in 153. Condition (2.4) represents a ten- 

sor analog of the known condition of parallelism of two vectors c and a 

c,la, = cs/fls = c3/4,q 

The Euler angles can also be obtained, one after another, from the following formu- 

4% ’ = 

co9 33n4 - sin 2f%at 

SiJi @Z6 - COS &Z,j (0 < -r d RI 

tg Pa I= - 
JCi(afi sin /3 -. an cm 3) 

sin T [ a2 + JCf(cos 2&z+ + sin 2&sr) - 0, sin tpzi 
(0 < a < 22~) 

In the plane case (i.e. when \’ s tt) we have a single angle of rotation of the principal 

axes11 = a + P.Moreover, from (1.8) and (1.9) we have 

n = r/s arctg (a~/u~) (0 Q q < 2Rf 

3, Let us denote by@ (Q, + . ., et3) the density of the elastic strain energy. The pre- 

sence of the symmetry elements in the elastic material imposes definite restrictions on 

the form of the arguments of a). A detailed analysis of this problem is given in Cl]. It 

should be noted however, that the combinations of the components of strain obtained 

in n ] as arguments of cf, are quite complicated and numerous. 

Relations (1.8) - (1.10) imply that we may consider 

cl) = U) (El, 6,sin \I’,,, U,cosvr; a, fi, 1) (3.1) 

The main purpose of this paper is to show what restrictions on the form of the argum- 
ents of the given function are imposed by the presence of the elastic symmetry elements 

in the material. 
Let us consider, in addition to the basis elf, ePtr c,‘another orthonormalized basis 

VI *,, C?‘,, es”, the passage to which can be realized by an additional rotation such that 

cj” = c:,‘lgj’. Relation (1.4) gives ej” = ~~:l,~ Pj 1 ‘i.e. ej’ = v,A,~, where hij denote the 

components of the matrix 

A -: 11 hkl Ij = Id!.’ (/i, I -= i, 3, 3) (3.2) 

Thus the successive passage from the initial basiser, es, es to the intermediate basis 
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er’, e,‘, e,‘(defined by the matrix L). and to the final basis e,“, e,“! c,“(the matrix L’) 
can be replaced by a straight passage from the initial to the final basis by means of the 

matrix (3.2). Let for example L’ = LifP@ be the matrix describing the rotation about 

the e,’ -axis through an angle 0’. We have or’ = cog’ = 0 and oa’ z o’ and by (1.5) 

cost’ 0 sine’ I 

L’=z = L2” jo’ 
1 

0 1 0 

- sin 0’ 0 cos 0’ /1 
~ght-multiplying this matrix by L (I. 6) we obtain 

k,, = ~0s a co9 (p + 0’) cos y - sin a sin (p + o’), hlB = cos a sin y 

*rs = GUS a sm (0 + 0’) coa y + sin a cos (B + 0’1, ha, = co9 (/3 + 0’) cos y 

bps = coa y, has = sin (@ + w’) sin y, A,, = - sin a co9 (6 + 0’) eos y - 
- cos a sin (@ + 0’) 

x ss =I sin a sin y, ha, = - sin a sin (f3 + 0’) cos y + cos a coa (0 + 0’) 

which, compared with (I. 6), shows that a s~a~~tforward rotation from the initial to 
the final basis is determined by the Euler angles 

L%+ s, (a’=u, P’=B+o’, r’=r} 

Similarly, an additional rotation about the es’ -axis by rt, yields two possible Euler’s 

angles 

Lz$“’ = t2+ 
i 

a) a’=x+a, p)=x-@, q’=n--r 
3 b) a’ = a, p’=-j3, r’=n+r 

corresponding to the same angle of rotation cosines. 

Let us dwettLyz th~~~d$~~ + n * nt, The,expressions obtained yield 

L,? (a’ = 01, fi‘ = p + ys.z, \‘ZTy: 
L2#j (a’=a, p’=p+J/2x;-/‘= r) 

L2r0 {a’ = a. p’ = 3 + ‘/an, 7’ zz -f} (3.3) 
L 2em {a’ = a, p’ = /3 + a’, 7’ = r} (0’ is arbitrary) 
L :! (a’= a, @’ = - 3, 7’ = +r j Jr} 

4, The crysta$ographic classes (except the cubic class) and five orientations have the 
following elements generating the symmetry groups (g) given in the third column of 
Table 1 [6] where t), and Z denote the R- th order proper and mirror axes, m is the pla- 
ne of reflection. (*) denotes parallelism and 1:) denotes the perpendicularity of the 
symmetry elements. The last column gives the generating elements of the characteris- 

tic symmetry rotation subgroups. As we know 16, ‘71 the defining elements g can be ob- 

tained from go by supplementing the latter with the inversion transformation i. Since the 
components of a tensor of valence two are invariant under the inversion ~ansforma~on 
we can Limit ourselves to considering the column &. 

Let us e. g. consider the rhombic system whose generating elements are, in accorda- 
nce with Table 1, L@ and L8. By the first and sixth equation of (3.3) the Euler’s angles 
must appear in the elastic potential (3.1) in the form invariant under the transformation 

a’ = a, 17’ = yfx, B’= @+x, fi’=--fl 

Since we only consider here the &t-periodic functions of the Euler angles, the following 
functional arguments satisfy the above conditions sm a, cos a, cos 2& sin 2y, cos 2~ 
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Crystallographic Systems 

Triclinic 

Monoclinic 

Rhombic 

Tetragonal 

Trigonal 

Hexagonal 

Class No. 
(act. to Groth) 

I 
.J 

3 
4 
5 

9 

:: 
12 
13 
14 
15 

:r: 

:; 
20 

21 
22 

Orientations 

(gyrotropic) 

(isotropic) 

Generating Elements 

! 
2 

2% 

2:2 
2 x m 

mx2:m 

i 
4 x m 
4~2 
4:m 
4x m 

m x4 : m 

: 

362 
3X m 
6xm 

3 : m 
mx3: ~ti 

G 
6.” .Y 
6:m 
6Xl7Z 

mx6:m 

00 
0o:m 
c*sxel 

mxoo:m 
00:2 

E* 

,t 
I 

2 
2 
2 

g; 
2:2 

z 
3:2 
3~2 
3~2 

6t2 

6:2 

6F2 
6:2 

00 
OQ 

00:2 
00:2 
co:2 
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Table 1. 

The remaining crystallographic systems and orientations are treated in a similar man- 
ner, and the results obtained are 

Tricllnic (system) 

(1) {‘/a JfiTE1, 6, sin &, 0,cos&; sina, cosa, sin P, cosP, sinr, cosy) 

Monoclinic 
CD{. * .) sina, cosa, sin2P, cos2fl, sinr, COST} 

Rhombic 
a)(. . ., sina, cosa, cos 2P, sin 2~, cos2~) 

Tetragonal (classes) 
9, 10, 13 @{. . ., sina. cosa, sin 4p, cos4p. sinr, cosy} 

11, 12, 14, 15 a){. . ., sina, cos a, cos4P, co9 21, sin 27) 
Trigonal 

(4-i) 
16, 17 0’. . .( sin a, cos a, sin 3P, cos 3p, sin 7, cos r} 
18, 19, 20 @{. . .( sin a, cos a, cos 3p, sin 2~. cos 2~) 
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Hexagonal 
21, 23, 25 (1, {* . ., ain a, cos a, sin SB, cos 68, sin r, co9 7) 

22, 24, 26, 27 CD{. . ,I sin a, co9 u, cos SB, sin 2y co9 2r} 

Orientations 
m, 0o:m Q{. . ., sin a, cos a, sin r, cos y) 

coxm,00:2, mx CI; : m @{. . ., sin a, cos a, sin Zr, cos 27) 

Here the dots denote the invariant arguments i/31/3 E,, O,sin &,andO, cos &which have 
been omitted. They can also be replaced by e(i), e(,)and e(a). 

6. Let us consider the orientations 03 and 00 : m,normally defining a transversally iso- 
tropic material. Investigation of the polynomial functions ([l] p. 36) and of the general 

type functions [8] of the strain components yields the following arguments written in the 
notation adopted here: 

I e, lie, III,, eaz, e1a2+ en2 

Formulas (1.8) - (1.10) yield 

e22 =: r/&l + l/3 .I/g(S, sin & (“1~ c&y - l/z) fat2 1/30, cos Qe cos 2c+sin2 +r} 

~~22 + ~22~ = (6, sin jQz {3/ssin2 2-I)‘+ (tie sin lpc) (6, cbs qe) {- l/4 i/Scos 2a sin2 2r} + 
+ (0, co9 jQ2 {1/B cos* 2a sin% 2y + l/2 sin2 2a sina 7} 

Thus we see that the usual approach yields the Euler angles for the transversally iso- 
tropic material, which can appear as the arguments of CD only within the two combina- 

tions given above. With the approach employed in the present paper, we see from (4.1) 

that any periodic functions of a and y. can be used as the arguments of @**This of course 
also applies to the remaining systems and orientations considered here. 
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