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Expressions for the components of a symmetric tensor of valence two defining
its principal axes (1, 8), (1. 9) are given in terms of its trigonometric invariants
and Euler's angles, Formulas are cited which use the physical components of
the tensor given in the orthogonal coordinate system to define the invariants and
the directions of the principal axes of the tensor, The conditions (2, 4) that two
tensors of the form under consideration are coaxial, are given,

In contrast to the usual approach [1], the elastic potential is considered here
as a function of the trigonometric invariants of the strain tensor and of the Euler
angles defining the directions of the principal axes of strain, Elementary con-
siderations made it possible to establish the form of the functional dependence
of the elastic potential on the Euler angles compatible with isotropy groups of
the crystal classes and orientations, The cubic system however could not be
dealt with by these means, since its generating symmetry elements include a
third order axis inclined equally to the coordinate axes,

1, Letey, ¢, e;be the unit vectors of the principal vector basis of the symmetric ten-
sor A, of valence two, i, e, the unit vectors directed along the principal directions of A,
Constructing the trigonometric tensor basis [2]

G1=1/3 V3 (e1e1 + eze2 + esea), Ga=1'2 VZ(eres + eses)
Ga= 1, VG.(IZezez ~—ee; —eges), Gz=1 Vf(elea - eqze:)

Gs = /2 VZ(e1e1 — eses), Go = 12 V2 (eses + esea) (1.4)
we find that the tensor A has the following expansion:
A=a,°G, (x=1,...,6) (1.2)

with tne coefficients given by
ay” = 1/3 Vg-zh, ag® = '00 sin 'q)a, a3’ = 'Ga co8 wa, a‘cv = aso =a;°=0 (13)
— ._]_
Ar=agy 4 ag) + ).
v neres. i, is the first invariant,

v, =" V3 Y {ayy— ag)’ + (ap — ag)* + (a5 — aq)

Py

11, derotes the intensity and 4, is the angle associated with the form of the tensor, The
last three quantities are connected with the principal values amof the tensor by the fo-
llowiny relations:

agy =Yook — s VGO, sin, =+ 2 V20, cos g

670



L

Properties of symmetric tensors of valence two

gy ="'hd1+4s Vﬁ—x‘)asin Py
8y ="sA1—"/s Vé-ﬁasin Py —1a Vz—ﬂacos Ya
Lete,’, e,’, ;" be an orthonormalized vector basis the passage to which from the prin-
cipal vector basis is determined using the relations

e =¢e,ly (.4
where (i are the coefficients of the matrix [3]}
100 . 0 —ws o
‘L<=]]1kiﬂ=cosm 01 0f+ Jno o 0
@ 3 —w |+
0 0 1 — W3 ) 0
{ 0} 0w oo
—COS @
Fr | 1 0 @08 (1.5)

;03 w3 ©3

ln=cosacosPcosT—~sinasinp, lhia = —cosasiny

4y = cos a sin B cos 7 -+ sin a cos B, l21 = cos BsinY, lu=cosY

133 = sin B sin 7, lyy = —sinacos B cos y —cosa sin B 1.6)
lys = sina sin 7, 32 = — sina sin B cos 1 4 cos a cos B

Herew;, w,, wjare the components of the rotation vector transforming the unit vectors
€, ¢, €; intoe,’, e,’, e,” and q, B, y are the corresponding

Euler angles (Fig, 1),
It can easily be shown that the basisG,’, . . ., G,’,con-
structed on e,’, e;’, e5’,admits the following expansion of

the tensor A

A=aG ' .7
with the coefficients
ar=1 V3, a; =0, sinp,m,. 4 &, cos p,m,;
where 1.8)
Fig,1. Mg == 1/3 cosT ¥ — 1)y, msz =13 ¥V 3cos2asin®y

Moy = ik ¥V 3cos 2Bsin?Y, maa=lfacos 2acos 23 (1 + cos® ) — sin 2B sin 2a cos 7
may =13 V?sin 2Bsin®Y, mag =/28in 2B cos 2a (1 -+ cos* ) 4 cos 2B sin 2a cos ¥
mas ==1/y V?cos 8 sin 27, mgs = —1/5 cos B cos 2o sin 27 -+ sin B sin 20 sin v
Mg == Y2 V 3 sin B sin 27, mgg = — 13 sin B cos 2a sin 2y — cos Bsin 2asin

(1.9)

Here the following relations connect a; with the physical components «;; of the tensor
A (on the ¢,’, €, ¢,’- basis)

a1 =1 V'3 (a1 + a2 + ax), = VZaa

a3 =" Vg_(Zazz — an — ass), as = VZ_an

ag ==1/y Vi(au — as), as= VZan

Performing the convolution of the symmetric tensors (contraction followed by symm-

(1.10)

etrization) [4]
AsB =12 (Al 4- BA)
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we obtain, in accordance with (1,1),

Gi1eGr =13 V:;-Gl. Gi1eGg =13 V3_Gz, Gi1xG3 =13 VE_Ga (1.11)
G2eGr =13 V3Gt Y V8 Gy, GoeGa=—1/, V5 Gs, GasGa="5 V36— VG Ga

2. The formulas (1,7) - (1. 9) reveal the structure of the tensor, Knowing the inva-
riants of the tensor and the directions of its poncipal axes, we can compute its compo-
nents on any orthonormalized basis., The converse problem is somewhat more involved,
It can be stated as follows: given the physical components of the tensor in some ortho-
gonal coordinate system, to find its principal values and the directions of its principal
axes, First we find the invariants using the formulas

Op= VA — 24;, sin3y,=— 3 V588 (As — Vad1ds + %a: 43
Al = an + ag2 + am

ap a2 ap

a1 a a1 a3 a2 @3 .

Ay = As = | aiz as ags
aiz a2 213 Qg3 az3 4ass

ars a: amn

To determine the Euler's angles we must first compute A?. Using the tables (1,11) we
contract the tensor A with itself and denoting by (a%); the coefficients of the expansion
of A3on the basis G,’, .., G4'we find

(*h=1/s V(-S'-(ax2 4 a4 e+ ad+a 4-a) =Y VIAL+ i V3io,?
(a% = /s hias + Yo V6 (a2? — a3?) + Y1z V6 (as? + ag* — 2a4?)
(@ ==3/aras — Vs VG asas +1/¢ V2 (0 — ag?)
(8% = ¥atrag— 3 VT aray + s V2 (a5 — a?) (2.1)
(a%)s = Ys.A1a5 + Yo V 6 azas + 11 Vfaaaal + s V 2a4ae
(a%) = s ras -+ s VB aran —1/s V2 asas + Y3 V 2auas
On the other hand, from (1.2),(1.3) and (1,11) we have
A= (/o VE A+ VIO Gi + 704 (5in Yo Ga +Yadicospg Ga) —
— 15 V68, (cos 2¥g G2 -+ sin 2, Gs)

Repeating the procedure used in deriving (1, 8) we obtain

Yo VI AR+ V302 = (a%) (2.2)
V6 [(a%); — s Ara;] = — 0,3 (cos 2Pgm,; + sin 2Pgm, ; (Gi=23,...,0

Solving the pairs of equations constructed for each value of j from (1. 8) and (2.2),
we obtain

VE&cos sin 24
ey = { aerestape ey — ok} — gogoot—e, | 23)
_V G sin |, cos 2\, 1,
ts = {Doreos g 0% — o] 4 gogomim o | (=280

Using the formulas obtained we can now solve the converse problem, Thus using (1,10)
we obtain a;; from the known physical components a;; of the tensor, These in tumn are
used to obtain m,;j and m;j from (2,1) and (2,3). Then the (simultaneous) system of
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equations (1, 9) yields the Euler angles defining the position of the principal axes of the
tensor A.
It is easy to see that the conditions that two symmetric tensors A and C are coaxial,

are 2.4)

m,C=m 2% m,C=m

2 2’ 3j 3?

The latter, together with (2, 3), yield the following relations connecting the coaxial

tensors
(8¢ =(C—01G) e, Sy =(A—1A4:1G)/ 0,
€08 (295 + Ve i a— Ve
Sc .__(c%_:ﬁlr.‘p_)s -+ Vb i&ébq;_gﬁm(sazwlh(;)

cos (P, -+ 2,) $in 2 (Y = Po)
S 3G = 0 (g 21 et e T E
/s <08 3“70 (S st) + VG oS 3‘4’“ a

The first of the above conditions was obtained in [5]). Condition (2, 4) represents a ten-
sor analog of the known condition of parallelism of two vectors ¢ and a
elay = cyfay = ty/ag
The Euler angles can also be obtained, one after another, from the following formu-
las: 2(a; — O, 5in P)as — V 3 asan
2 (a2 — Oq sinYg) aa - V'3 (ast — as?)

¢ _ 08 2504 — Sin QBG:; ~
gy = Sin Bas — Cos Pag O™

V'3 (a5 sin B — ancos 8)
sin 7 [az + ¥ 3 (cos 2Bas + sin 2Bas) — ¥ sin ¥, ]

In the plane case (i,e. when y = 0) we have a single angle of rotation of the principal
axes) = a ~ fi.Moreover, from (1. 8) and (1,9) we have

tg2h= 0 <B< 2)

tg 2o = — O<a g 2n)

N = 1/, arctg (aday) (O<n<2n

8, Let us denote by (¢, . . ., €5} the density of the elastic strain energy, The pre-
sence of the symmetry elements in the elastic material imposes definite restrictions on
the form of the arguments of ¢, A detailed analysis of this problem is given in [1], It
should be noted however, that the combinations of the components of strain obtained
in [1] as arguments of @ are quite complicated and numerous,

Relations (1, 8) - (1,10) imply that we may consider

= O (£, O siny,, Vecosys o B, 7) 3.1)

The main purpose of this paper is to show what restrictions on the form of the argum-
ents of the given function are imposed by the presence of the elastic symmetry elements
in the material,

Let us consider, in addition to the basis e,’, ¢,’, ¢s'another orthonormalized basis
e", ¢", ¢g”, the passage to which can be realized by an addmonal rotation such that

;" = ¢,'13;'. Relation (1.4) givese;" = ¢,l,5/l;/ i e. ;" = = A, where A;.denote the
components of the matrix
A =g = LL (ky1=1,2,3) 3.2)

Thus the successive passage from the initial basise;, €, €510 the intermediate basis
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e, e, ¢;’ (defined by the matrix L). and to the final basis e,”’, e,”, e,"(the matrix L)
can be replaced by a straight passage from the initial to the final basis by means of the
matrix (3,2), Let for example L’ = Lz”"" be the matrix describing the rotation about
the e," -axis through an angle w’. We have ¢’ = 03’ = 0andw,’ = w’and by (1. 5)
| cose’ 0 sinw’ |

0 1 0
—sine’ 0 coso
Right-multiplying this mawrix by L (1,6) we obtain

Ay =cosacos{f 4 w)cosy —sinasin (f + @), Ay =cosasiny
Mg =Cusasin (P + o)cosy+ sinacos (p+ o), Ay =cos(P+o)cosy

L == Lgn Iy —

Agg = COS Y, Agy = 8in (f + @) siny, Ay = — sinacos (B + ©')cosy —
— cos a sin (§ - @)
Ayg == sinasiny, Ay = —sinasin (§ + ©") cos y -+ cosa cos (§ + w)

which, compared with (1,6), shows that a straightforward rotation from the initial to
the final basis is determined by the Euler angles

LB @' =a, BT =B+ o, 7' =1}

Similarly, an additional rotation about the ey -axis by #,yields two possible Euler’s
angles
[exle’ g2, {9) ¢=n+a, f=n~B3 y=n—7%
ks 3 b) a' =aq, B=—B Y=n4r
corresponding to the same angle of rotation cosines,
Let us dwenLnn the second yar nt. The expressions obtained yield

L:3 { —aq, B——B—’- /31,T' '{rf}

Lyt o' =0, B' =R+ 17 =1}
"o =a, B =84, v’ =17} (3.3)
T =a, =B+, 7'=17) (@ is arbitrary)

Ls'"‘ @ =a §'=—38, v =1+n

4, The crystallographic classes (except the cubic class) and five orientations have the
following elements generating the symmetry groups (g) given in the third column of
Table 1 [6] where n, and 7z denote the n-th order proper and mirror axes, m is the pla-
ne of reflection, () denotes parallelism and (%) denotes the perpendicularity of the
symmetry elements, The last column gives the generating elements of the characteris-
tic symmetry rotation subgroups. As we know [6, 7] the defining elements g can be ob-
tained from g, by supplementing the latter with the inversion transformation i. Since the
components of a tensor of valence two are invariant under the inversion transformation
we can limit ourselves to considering the column go.

Let us e, g, consider the thombic system whose generating elements are, in accorda-
nce with Table 1, Z,-* and L»*. By the first and sixth equation of (3, 3) the Euler's angles
must appear in the elastic potential (3,1) in the form invariant under the transformation

o' =a Y=y+na pf=pft+tar f=-—58

Since we only consider here the 2n-periodic functions of the Euler angles, the following
functional arguments satisfy the above conditions sin a, cos &, cos 2B, sin 2y, cos 2y
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Table 1,
Crystallographic Systems Class No, Generating Elements

(acc, to Groth) I'4 ge
» . - ‘
Triclinic é :‘l. :
Monoclinic 3 2 2
4 m 2
5 2

Rh i G 2:2 2:2

ombic 7 2xm 2:2

8 mx2:m 2:2
Tetragonal 9 4 4
go 10 4 4

11 dxm 4:2

12 4:2 4:2
13 b:m 4

14 dxm 4:2

15 mxb4:m 4:2
Trigonal 16 3 3
17 6 3

18 3:2 3:2

19 3xm 3:2

20 6xm 3:2
Hexagonal 2 3:m 6

22 mx3:m 6:2
23 6 6

24 6:2 6:2
25 6:m 6

26 6xm 6:2

27 mxb:m 6:2
Orientations o0 oo
oo.:m o0

. o xm 0012

(gyrotropic) mxoo:m 00:2

(isotropic) 00:2 002

The remaining crystallographic systems and orientations are treated in a similar man-
ner, and the results obtained are

Triclinic (system)

D {Ys VIE), §,8iny,, ¥ cosy,; sina, cosa, sinp, cosB, siny, cosy}

Monoclinic
D{..., sina, cosa, sin2p3, cos2B, sin7, cos T}

Rhombic
@{... sina, cosa, cos 2B, sin 27, cos 27}

Tetragonal (classes)

9, 10, 13 @®{. .., sina, cosa, sin 4B, cos 4B, siny, cos 7}
11, 12, 14, 15 D{... sina, cosa, cos4B, cos2y, sin2y}
Trigonal (4.1)
16, 17 ®{. .., sina, cosa, sin 3B, cos 3B, sin T, cos 7}

18, 19, 20 @{.. ., sina, cosa, cos 3B, sin 27, cos 271}
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Hexagonal
g 21, 23, 25 D{..., sina,cosa,sinbB, cos63, siny, cost)
22, 24, 26, 27 ®{. .. sina, cosa, cos 68, sin 27 cos 27}
Orientations . .
00, coim @{... sina,cosa,siny, cos T}
coxm, 002, mx oc:m D{..., sina,cosa,sin 27, cos 27}

Here the dots denote the invariant argumentsi/s) 3 E,, ¥.sin,,andd, cosywhich have
been omitted, They can also be replaced by e;), ¢yand e,

6. Let us consider the orientations oo and oo : m,normally defining a transversally iso-
topic material, Investigation of the polynomial functions ([1] p, 36) and of the general
type functions [8] of the strain components yields the following arguments written in the
notation adopted here:

le, g, I, e, e+ en®

Formulas (1, 8) - (1,10) yield
ez == VhE1 + Y V6 {0, sin P, (32 cos? 1 — YY2) £/, ¥ 39, cos Y, cos 2o05in% 1}

e12? - e = (0, 8in Pe)? {¥/s5in? 27} 4 (P 5in D) (&e €08 Pp) {— 11 V§cos 2a sin? 27} 4+
<+ (O €08 P,)% {15 cos? 2a sin? 27 - 12 sin? 2a sin? 7)

Thus we see that the usual approach yields the Euler angles for the transversally iso-
tropic material, which can appear as the arguments of ¢ only within the two combina-
tions given above, With the approach employed in the present paper, we see from (4, 1)
that any periodic functions of @ and ¥. can be used as the arguments of ®.This of course
also applies to the remaining systems and orientations considered here,
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